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Abstract
The Darboux transformation of a supersymmetric principal chiral field model
in two dimensions is studied. We obtain exact superfield multisoliton solutions
of the model by means of iterated Darboux transformation and express them in
terms of quasideterminants.

PACS numbers: 11.10.Nx, 02.30.Ik

1. Introduction

In previous work [1] we investigated Darboux transformation of a principal chiral field model
in two dimensions. We obtained the multisoliton solutions of the chiral model using the
Darboux matrix approach. The matrix solutions of the chiral model and those of its associated
Lax pair were shown to be expressed in terms of quasideterminants. The quasideterminant
solutions were also shown to be related to the solutions obtained by Zakharov and Mikhailov
using the dressing method based on the matrix Riemann–Hilbert problem.

In this paper we extend these earlier results for the case of a supersymmetric chiral field
model in two dimensions. The classical integrability of the model is studied extensively, see
e.g. [2–9]. We study Darboux transformation by introducing a superfield Darboux matrix for
the supersymmetric chiral model and obtain superfield multisoliton solutions using the iterated
Darboux transformations. The superfield multisoliton solutions of the supersymmetric chiral
field were obtained by Mikhailov [2] by using the generalization of the method of Zakharov and
Mikhailov [15]. We use a related method of Darboux transformation by defining a superfield
Darboux matrix. We show that the superfield multisoliton solutions of the supersymmetric
chiral field model can be expressed in terms of quasideterminants. The main results of this
paper are as follows: the superfield generalization of the soliton solution generating method
of Darboux transformation in terms of the superfield Darboux matrix, the construction of
superfield multisoliton solutions in terms of quasideterminants, explicit soliton solutions for
the model based on the Lie group SU(2). The K times iteration of Darboux transformation to
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obtain quasideterminant Kth conserved superfield currents and quasideterminant superfield K
solitons of the model in terms of initial (seed) solution is also studied.

Following [2], we define a Grassmann even superfield G(x±, θ±) with values in a Lie
group G. The superspace Lagrangian of the supersymmetric chiral field with target space G is
then given by1

LSCF = 1
2 Tr(D+G

−1D−G) (1.1)

and G(x, θ)G−1(x, θ) = 1 = G−1(x, θ)G(x, θ). The superspace LagrangianLSCF is invariant
under the global transformation GL ×GR : G(x±, θ±) = UG(x±, θ±)V−1, where U and V are
GL and GR valued Grassmann even matrix superfields, respectively. The Noether conserved
superfield currents associated with GR are J± = −iG−1D±G which are Grassmann odd
superfields and are Lie algebra g valued, i.e. J± = J a

±T a, where the anti-Hermitian generators
{T a, a = 1, 2, . . . , dimg} of the Lie algebra g obey [T a, T b] = f abcT c and Tr (T aT b) = δab.

For any X ∈ g, X = XaT a . The conserved superfield current corresponding to the GL

transformation is −GJ±G−1. The superfield equation of motion of the supersymmetric chiral
field is the superfield conservation equation and the superfield zero-curvature condition:

D+J− − D−J+ = 0, (1.2)

D−J+ + D+J− + i{J+, J−} = 0. (1.3)

We can expand the matrix superfield G(x±, θ±) in terms of bosonic and fermionic component
fields as

G(x, θ) = g(x)(1 + iθ+ψ+(x) + iθ−ψ−(x) + iθ+θ−F(x)), (1.4)

where ψ± are the Majorana spinors such that ψR
± = g−1ψL

±g, and F(x) is the auxiliary field,
with an algebraic equation of motion2. The Majorana spinors ψ±(x) take values in the Lie
algebra g of G. The action of the symmetry GL × GR on component fields is given by

g �−→ UgV −1, ψR
± �−→ V ψR

±V −1, ψL
± �−→ UψL

±U−1, (1.5)

where U and V are the leading bosonic components of the matrix superfields U and V
respectively, i.e. the fermions transform under GR or GL.

After the elimination of the auxiliary field from the expression of G(x, θ), the component
Lagrangian finally becomes

L = −1

2

(
g−1∂+gg−1∂−g +

i

2
ψ+∂−ψ+ +

i

2
ψ+[g−1∂−g,ψ+]

+
i

2
ψ−∂+ψ− +

i

2
ψ−[g−1∂+g,ψ−] +

1

2
ψ2

+ψ2
−

)
. (1.6)

1 In our notation the superspace is defined with coordinates (x±, θ±), where x± are the commuting light-cone
coordinates of the two-dimensional Minkowski space R

1,1 with metric ημν = diag(1,−1) and θ± are anticommuting
fermionic coordinates and are real Grassmann numbers. The light-cone coordinates x± are related to the orthonormal
coordinates by x± = 1

2 (t ± x) with the derivatives ∂± = ∂t ±∂x . The N = 1 supercharges are Q± = ∂
∂θ± +iθ±∂±, and

the superspace covariant derivatives are D± = ∂
∂θ± − iθ±∂±, which obey {Q±, Q±} = i2∂±, {D±, D±} = −i2∂±,

with all other anti-commutators vanishing. Under the Lorentz transformation the coordinates of superspace and their

derivatives transform as x± �→ e±ηx±, ∂± �→ e∓η∂±,θ± �→ e± 1
2 ηθ± and D± �→ e∓ 1

2 ηD±, where η is the rapidity of
the Lorentz boost.
2 Note that our conventions are such that the γ -matrices γ0 =

(
0
−i

i
0

)
,γ1 =

(
0
i

i
0

)
satisfy {γμ, γν} = 2ημν . The

Dirac spinor is ψ =
(

ψ+
ψ−

)
, where ψ± are chiral spinors and our assumption is that ψ± are real (Majorana) and the

Lorentz behavior of these Majorana spinors is ψ± �→ e∓ 1
2 ηψ±.

2



J. Phys. A: Math. Theor. 43 (2010) 035204 B Haider and M Hassan

Using Euler–Lagrange equations, we can directly find the component equations of motion
for the supersymmetric chiral field. From the definition of superfield current J±, we write its
component expansion as

J± = ψ± + θ±j± − i

2
θ∓{ψ+, ψ−} − iθ+θ−

(
∂±ψ∓ − [j±, ψ∓] − i

2

[
ψ2

±, ψ∓
] )

, (1.7)

where the component bosonic conserved current is j± = − (
g−1∂±g + iψ2

±
)
. Substituting

these into the superspace equations of motion, collecting terms and writing h± = ψ2
± ⇔

ha
± = 1

2f abcψb
±ψc

±, we get the equations of motion for fermionic fields ψ± and bosonic fields
j± of the supersymmetric chiral field model:

∂±ψ∓ − 1

2
[j±, ψ∓] − i

4
[h±, ψ∓] = 0, (1.8)

∂−j+ + ∂+j− = 0. (1.9)

We use the fermion equations of motion to get the following equations:

∂−j+ − ∂+j− + [j+, j−] = i(∂−h+ − ∂+h−), (1.10)

∂∓h± +
1

2

[
h±, j∓ +

i

2
h∓

]
= 0, (1.11)

∂−h+ + ∂+h− = 0. (1.12)

Equations (1.9) and (1.12) show the conservation of bosonic currents j± and h±, respectively.
The supersymmetric chiral field equations (1.2)–(1.3) can be written as the compatibility

condition of the following superfield Lax pair:

D±V(λ) = − i

1 ∓ λ
J±V(λ), (1.13)

where λ is a real (or complex) parameter. The component expansion of the Lax pair (1.13)
gives

∂±V (x±; λ) = 1

1 ∓ λ
j±V (x±; λ) + i

(
1

1 ∓ λ

)2

h±V (x±; λ), (1.14)

where V (x±, λ) is the leading purely bosonic component of the superfield V(x±, θ±, λ). In
this case, the compatibility condition of (1.14) gives equations (1.8)–(1.9). Therefore, the
partial differential equations (1.2)–(1.3) have the Lax pair (1.13), while equations (1.8)–(1.12)
have the Lax pair (1.14).

We will use the notion of quasideterminants in order to express the superfield multisoliton
solutions of the supersymmetric chiral field model. The quasideterminants were introduced
by Gelfand and Retakh [28–32]. Let X be an N ×N matrix over a ring R (noncommutative, in
general). For any 1 � i, j � N , let r

j

i be a row matrix obtained by removing the j th entry of
X from the ith row. Similarly, c i

j is the column matrix containing the j th column of X without
the ith entry. There exist N2 quasideterminants denoted by |X|ij for i, j = 1, . . . , N and are
defined by

|X|ij =
∣∣∣∣∣X

ij c i
j

r
j

i xij

∣∣∣∣∣ = xij − r
j

i (Xij )−1ci
j . (1.15)

In the block form, the quasideterminant of the K × K matrix expanded about the N × N

matrix D is defined by∣∣∣∣∣A B

C D

∣∣∣∣∣ = D − CA−1B. (1.16)
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For various properties and applications of quasideterminants in the theory of integrable
systems, see e.g. [28–40].

2. Darboux transformation on superfields

In order to construct multisoliton solutions of the supersymmetric chiral field model, we define
Darboux transformation on the superfields that provides a natural generalization of Darboux
transformation to the supersymmetric case. In the present case, the Darboux transformation is
defined by an N × N Grassmann even superfield matrix D(x±, θ±, λ), called the superfield
Darboux matrix (for a discussion on the method of the Darboux matrix see [10–21]. The
superfield Darboux matrix connects the two superfield solutions of the Lax pair (1.13). Let
us define the superfield matrix D(x±, θ±, λ), such that the superfield V of the Lax pair (1.13)
transforms as

Ṽ = D(λ)V, (2.1)

with suitable J̃± satisfying equations (1.2)–(1.3). That is the new solutions J̃±, Ṽ are defined
in such a way that the superfield Lax pair (1.13) is covariant under the Darboux transformation.
That is, the transformed superfields satisfy the same Lax pair

D±Ṽ = − i

1 ∓ λ
J̃±Ṽ. (2.2)

By substituting equation (2.1) into equation (2.2), we get the following condition on the
superfield Darboux matrix D(λ):

D±D(λ)V(λ) + D(λ)
1

1 ∓ λ
(−iJ±)V(λ) = 1

1 ∓ λ
(−iJ̃±)D(λ)V(λ). (2.3)

For our system, we make the following ansatz for the superfield Darboux matrix:

D(x+, x−, λ) = λI − S(x+, x−), (2.4)

where S(x+, x−) is some N ×N matrix superfield to be determined and I is an N ×N identity
matrix. Note that we consider here the superfield Darboux matrix of degree 1 which is linear
in λ. Therefore, to construct the superfield Darboux matrix D(x+, x−, λ), it is only necessary
to determine the matrix S(x+, x−). Also note that our construction of the superfield Darboux
matrix is based on the approach initiated in [1] and [20], for the bosonic chiral model. In
comparison, the construction of the superfield Darboux matrix in [2] is based on the dressing
method of Zakharov and Mikhailov [15]. The important point, however, is to express the
superfield matrix S in terms of solutions of the linear problem.

Now substituting (2.1) in equation (2.2) and using (1.13), we get the following Darboux
transformation for the superfield current components:

J̃± = J± ± i D±S, (2.5)

and the matrix superfield S is subjected to satisfy the following equations:

D±S(I ∓ S) = −i[J±,S]. (2.6)

These new (Darboux transformed) superfield currents are also conserved and obey the
superfield zero-curvature condition, i.e.

D+J̃− − D−J̃ + = 0 (2.7)

D−J̃ + + D+J̃− + i{J̃ +, J̃−} = 0. (2.8)

4



J. Phys. A: Math. Theor. 43 (2010) 035204 B Haider and M Hassan

In the supersymmetric chiral field model, there are Grassmann even superfields such as D±J±
and J 2

± which are relevant especially when we expand the superfields in terms of component
fields. The bosonic superfield conserved currents D±J± and J 2

± transform as

D±J̃± = D±J± ± ∂±S, J̃ 2
± = (I ∓ S)J 2

±(I ∓ S)−1, (2.9)

and the conditions on S are now written as

∂±S(I ∓ S) = ±D±J±S ± SD±J± − iJ 2
± + i(I ∓ S)J 2

±(I ∓ S)−1. (2.10)

For a non-trivial solution of equation (2.6) or (2.10), we proceed as follows.
Now following the strategy of the non-supersymmetric model [1], we construct a matrix

superfield from the particular column superfield solutions of the superfield Lax pair at particular
values of the spectral parameter. Let λ1, . . . , λN be N distinct real (or complex) constant
parameters and λi �= ±1; i = 1, 2, . . . , N. Let us also define N constant column vectors
|1〉 , |2〉 , . . . , |N〉 such that

M = (V(λ1) |1〉 , . . . ,V(λN) |N〉) = (|
1〉 , . . . , |
N 〉) (2.11)

be an invertible N × N matrix superfield. Each column |
i〉 = V(λi) |i〉 in M is a column
solution of the superfield Lax pair (1.13) when λ = λi, i.e. it satisfies

D±|
i〉 = − i

1 ∓ λi

J±|
i〉, (2.12)

and i = 1, 2, . . . , N . Assuming � = diag(λ1, . . . , λN), equation (2.12) can be written in
matrix form as

D±M = −iJ±M(I ∓ �)−1. (2.13)

The matrix superfield S is now chosen such that when substituted in equation (2.4), it gives
the Darboux transformation. Now we make the following choice of the matrix superfield S:

S = M�M−1. (2.14)

The matrix superfield S is expressed in terms of the solutions of the linear problem which
allows the construction of new solutions by means of the superfield Darboux matrix D. It can
be easily checked that the choice (2.14) satisfies condition (2.6).

Since we have assumed M to be invertible, therefore, we require that detM �= 0. At this
stage, we conclude that if the set of superfields (J±,V) is a solution of the Lax pair (1.13)
and the matrix superfield S(x±, θ±) is defined by (2.14), then the set of matrix superfields
(J̃±, Ṽ) defined by (2.5), (2.1) via Darboux transformation (2.4) is also a solution of the same
Lax pair. This establishes the covariance of the superfield Lax pair (1.13) under the Darboux
transformation (2.4).

Now if the target space of the supersymmetric chiral field model is the Lie group U(N),
then we also require for the new superfield solutions to take values in U(N). We know that the
Lie group U(N) consists of all N × N matrices G such that G† = G−1. An arbitrary matrix
X belongs to the Lie algebra u(N) of the Lie group U(N) if and only if X† = −X. Since
the superfield currents J± are u(N) valued, we require that the new superfield currents J̃±
obtained by Darboux transformation must be u(N) valued, i.e. they must be anti-Hermitian.
This leads to the following condition on the matrix superfield S(x±, θ±):

D±(S + S†) = 0. (2.15)

For the matrix superfield S to satisfy (2.15), we proceed by taking specific values of parameters
λi . Let λi = μ (i = 1, 2, . . . , N) be a non-zero complex number; then following [1] we get
the following conditions on the superfield matrix S:

5
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(S† + S) = (μ + μ̄)I, (2.16)

S†S = μμ̄. (2.17)

It is important to note that our solution of the linear system (1.13) is defined globally and
satisfies the reality condition

V†(λ̄)V(λ) ∈ {I }. (2.18)

To obtain global defined transformed solutions, the Darboux transformation must preserve this
reality condition, i.e.

Ṽ†(λ̄)Ṽ(λ) ∈ {I }. (2.19)

Using (2.1) and (2.4), also making use of (2.16) and (2.17), we see that

Ṽ†(λ̄)Ṽ(λ) = (λ2 − λ(μ + μ̄) + μμ̄)V†(λ̄)V(λ) ∈ {I };
the transformed solution satisfies the reality condition.

3. Quasideterminant superfield multisoliton solutions

Now we express the superfield multisoliton solutions of the supersymmetric chiral field
model in terms of quasideterminants of matrices over a noncommutative ring of matrices
whose entries are Grassmann even superfields. We can write equation (2.1) in terms of
quasideterminant as

Ṽ = D(λ)V = (λI − S)V,

= (λI − M�M−1)V =
∣∣∣∣∣ M I

M� λI

∣∣∣∣∣V (3.1)

and the chiral superfield G̃ is obtained from equations (3.1), i.e.

G̃ = Ṽ (0) = −SG = −(M�M−1) =
∣∣∣∣∣ M I

M� 0

∣∣∣∣∣ G. (3.2)

Similarly the conserved superfield currents J± are expressed as

J̃± = M(I ∓ �)M−1J±M(I ∓ �)−1M−1,

=
∣∣∣∣∣ M I

M(I ∓ �) O

∣∣∣∣∣ j±

∣∣∣∣∣ M I

M(I ∓ �) O

∣∣∣∣∣
−1

. (3.3)

Using the notation V[1] = V,G[1] = G, J±[1] = J± and V[2] = Ṽ,G[2] = G̃, J±[2] = J̃±,
we write the K-fold Darboux transformation on the superfield V as

V[K + 1] =
K∏

k=1

(λI − S[K − k + 1])V =
K∏

k=1

∣∣∣∣∣ M[K − k + 1] I

M[K − k + 1]�K−k+1 λI

∣∣∣∣∣V,

= λV [K] − M[K]�KM[K]−1V[K],

=

∣∣∣∣∣∣∣∣∣∣∣∣

M1 · · · MK I

M1�1 · · · MK�K λI

M1�
2
1 · · · MK�2

K λ2I

... · · · ...
...

M1�
K
1 · · · MK�K

K λKI

∣∣∣∣∣∣∣∣∣∣∣∣
V, (3.4)

6
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where for each k = 1, 2, . . . , K , we have defined an invertible N × N matrix superfield Mk

being the matrix superfield solution of the Lax pair (1.13) at � = �k . The above results can
be proved by induction using the properties of quasideterminants. Similar results have been
proved in [1]. The multisoliton solution G[K + 1] of the chiral model can be readily obtained
by taking λ = 0 in the expression of V[K + 1], i.e.

G[K + 1] =
K∏

k=1

(−1)k S[K − k + 1]G =
K∏

k=1

∣∣∣∣∣ M[K − k + 1] I

M[K − k + 1]�K−k+1 O

∣∣∣∣∣ G,

=

∣∣∣∣∣∣∣∣∣∣∣∣

M1 M2 · · · MK I

M1�1 M2�2 · · · MK�K O

M1�
2
1 M2�

2
2 · · · MK�2

K O

...
... · · · ...

...

M1�
K
1 M2�

K
2 · · · MK�K

K O

∣∣∣∣∣∣∣∣∣∣∣∣
G. (3.5)

Similarly the K times iteration of the Darboux transformation gives the following expression
of the conserved currents:

J±[K +1] = (I ∓S[K]) · · · (I ∓S[2])(I ∓S[1])J±((I ∓S[1])(I ∓S[2]) · · · (I ∓S[K]))−1,

=
K∏

k=1

∣∣∣∣∣ M[K − k + 1] I

M[K − k + 1](I ∓ �K−k+1) O

∣∣∣∣∣ J±
K∏

l=1

∣∣∣∣∣ M[l] I

M[l](I ∓ �l) O

∣∣∣∣∣
−1

=

∣∣∣∣∣∣∣∣∣∣∣∣

M1 · · · MK I

M1(I ∓ �1) · · · MK(I ∓ �K) O

M1(I ∓ �1)
2 · · · MK(I ∓ �K)2 O

... · · · ...
...

M1(I ∓ �1)
K · · · MK(I ∓ �K)K O

∣∣∣∣∣∣∣∣∣∣∣∣

× J±

∣∣∣∣∣∣∣∣∣∣∣∣

M1 · · · MK I

M1(I ∓ �1) · · · MK(I ∓ �K) O

M1(I ∓ �1)
2 · · · MK(I ∓ �K)2 O

... · · · ...
...

M1(I ∓ �1)
K · · · MK(I ∓ �K)K O

∣∣∣∣∣∣∣∣∣∣∣∣

−1

. (3.6)

Equation (3.6) gives the required expressions of Kth conserved superfield current components
of the supersymmetric chiral model expressed in terms of quasideterminants involving
particular solutions of the superfield linear problem.

The bosonic superfield currents D±J± and J 2
± that satisfy equation (2.9) can be written

in terms of quasideterminants as follows. The first set of equations (2.9) can be written as

D±J̃± = (I ∓ S)D±J±(I ∓ S)−1 − iJ 2
±(I ∓ S)−1 + (I ∓ S)iJ 2

±(I ∓ S)−2

= (I ∓ S)D±J±(I ∓ S)−1 − (I ∓ S)
[
(I ∓ S)−1, iJ 2

±
]
(I ∓ S)−1

= Q±[1]
(
D±J± +

[
iJ 2

±,Q± [1]−1])
Q±[1]−1, (3.7)

where the bracket [ , ] in the second term of (3.7) is the commutator and

Q±[1] = (I ∓ S[1]) =
∣∣∣∣∣ M I

M(I ∓ �) O

∣∣∣∣∣ . (3.8)

Similarly the Darboux transformation of the superfield J 2
± is given by

J̃ 2
± = (I ∓ S)J 2

±(I ∓ S)−1 = Q±[1]J 2
±Q−1

± [1]. (3.9)

7
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The Kth iteration of bosonic superfield currents D±J± and J 2
± can be applied in a similar way

and we get

D±J±[K + 1] = Q±[K]

(
D±J± +

[
iJ 2

±,

K∑
k=1

Q± [k]−1 Q[k − 1]

])
Q±[K]−1, (3.10)

J 2
±[K + 1] = Q±[K]J 2

±Q±[K]−1, (3.11)

where

Q±[K] = (I ∓ S[K]) · · · (I ∓ S[2]) (I ∓ S[1]). (3.12)

Expression (3.11) is similar to expression (3.6) and can be easily proved by induction (see
[1]). Equation (3.10) is slightly different; therefore, we give some details of inductive proof.
From equation (3.7), it is clear that expression (3.10) is true for K = 1. Now we show that
D±J±[K + 2] is true, given that (3.10) is true. For this we consider

D±J±[K + 2] = D±((I ∓ S[K + 1])J±[K + 1](I ∓ S[K + 1])−1)

= ∓D±S[K + 1](J±[K + 1](I ∓ S[K + 1])−1)

+ (I ∓ S[K + 1])(D±J±[K + 1])(I ∓ S[K + 1])−1

∓ (I ∓ S[K + 1])J±[K + 1](I ∓ S[K + 1])−1D±S[K + 1](I ∓ S[K + 1])−1.

By using equation (3.10) in the second term and

D±S[K + 1] = ∓iJ±[K + 2] ± iJ±[K + 1],

in the first and third terms, we get

D±J±[K + 2] = (I ∓ S[K + 1])Q±[K]D±J±Q±[K]−1(I ∓ S[K + 1])−1

+ (I ∓ S[K + 1])Q±[K]

[
iJ 2

±,

K∑
k=1

Q±[k]−1Q±[k − 1]

]
Q±[K]−1(I ∓ S[K + 1])−1

− (
iJ 2

±[K + 1] − iJ 2
±[K + 2]

)
(I ∓ S[K + 1])−1

= Q±[K + 1]

(
D±J± +

[
iJ 2

±,

K+1∑
k=1

Q± [k]−1 Q±[i − 1]

])
Q[K + 1]−1.

The quasideterminant expression for Q±[K] is

Q±[K] =

∣∣∣∣∣∣∣∣∣∣
M1 · · · MK I

M1(I ∓ �1) · · · MK(I ∓ �K) O

... · · · ...
...

M1(I ∓ �1)
K · · · MK(I ∓ �K)K O

∣∣∣∣∣∣∣∣∣∣
. (3.13)

Now we consider the series which can also be written as a quasideterminant
K∑

k=1

Q±[k]−1Q±[k − 1] = Q±[1]−1Q±[0] + Q±[2]−1Q±[1] + · · ·Q±[K]−1Q±[K − 1]

= −

∣∣∣∣∣∣∣∣∣∣∣∣

M1(I ∓ �1)
K · · · MK(I ∓ �K)K O

... · · · ...
...

M1(I ∓ �1)
2 · · · MK(I ∓ �K)2 O

M1(I ∓ �1) · · · MK(I ∓ �K) I

M1 · · · MK O

∣∣∣∣∣∣∣∣∣∣∣∣
. (3.14)
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The above result can be readily proved by induction by using the properties of
quasideterminants. Now the quasideterminant expression for the bosonic superfield conserved
currents is therefore written as

D±J±[K + 1] =

∣∣∣∣∣∣∣∣∣∣
M1 · · · MK I

M1(I ∓ �1) · · · MK(I ∓ �K) O

... · · · ...
...

M1(I ∓ �1)
K · · · MK(I ∓ �K)K O

∣∣∣∣∣∣∣∣∣∣⎛⎜⎜⎜⎜⎜⎜⎝D±J± −

⎡⎢⎢⎢⎢⎢⎢⎣iJ 2
±,

∣∣∣∣∣∣∣∣∣∣∣∣

M1(I ∓ �1)
K · · · MK(I ∓ �K)K O

... · · · ...
...

M1(I ∓ �1)
2 · · · MK(I ∓ �K)2 O

M1(I ∓ �1) · · · MK(I ∓ �K) I

M1 · · · MK O

∣∣∣∣∣∣∣∣∣∣∣∣

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠

×

∣∣∣∣∣∣∣∣∣∣
M1 · · · MK I

M1(I ∓ �1) · · · MK(I ∓ �K) O

... · · · ...
...

M1(I ∓ �1)
K · · · MK(I ∓ �K)K O

∣∣∣∣∣∣∣∣∣∣

−1

.

Similarly by using (3.13) in equation (3.11), we get

J 2
±[K + 1] =

∣∣∣∣∣∣∣∣∣∣
M1 · · · MK I

M1(I ∓ �1) · · · MK(I ∓ �K) O

... · · · ...
...

M1(I ∓ �1)
K · · · MK(I ∓ �K)K O

∣∣∣∣∣∣∣∣∣∣
× J 2

±

∣∣∣∣∣∣∣∣∣∣
M1 · · · MK I

M1(I ∓ �1) · · · MK(I ∓ �K) O

... · · · ...
...

M1(I ∓ �1)
K · · · MK(I ∓ �K)K O

∣∣∣∣∣∣∣∣∣∣

−1

.

4. Relation with Mikhailov’s superfield multisolitons

In this section, we relate the quasideterminant superfield mutisoliton solutions of the previous
section with the solutions obtained by Mikhailov using an equivalent method known as the
dressing method [2]. The superfield Darboux matrix (2.4) can also be written in terms of a
superfield Hermitian projector. For this purpose we make use of equation (2.14), i.e. we write

S|
i〉 = λi |
i〉, i = 1, 2, . . . , n

S|
j 〉 = λj |
j 〉, j = n + 1, n + 2, . . . , N.

Now we set λi = μ and λj = μ̄, so that the matrix superfield S may be written as

S = μP + μ̄P⊥, (4.1)

where P is the superfield Hermitian projector, i.e. P† = P. Also we have P2 = P and
P⊥ = I − P. Now from (4.1)

S = μP + μ̄(I − P) = (μ − μ̄)P + μ̄I. (4.2)

9
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The superfield Darboux matrix is now expressed as

D(λ) =
∣∣∣∣∣ M I

M� λI

∣∣∣∣∣ = (λ − μ̄)

(
I − μ − μ̄

λ − μ̄
P

)
. (4.3)

In expression (4.3) the Darboux-dressing function, expressed as quasideterminant containing
the particular matrix solution M of the Lax pair (1.13), is shown to be expressed in terms of a
superfield Hermitian projector P defined in terms of the particular column superfield solutions
|
i〉 of the Lax pair. For the case of models based on Lie groups of N × N matrices, we set
λi = μ (i = 1, 2, . . . , n) and λj = μ̄ (j = n + 1, . . . , N), so that the solution V[2] is given by

V[2] =
⎛⎝λI − μ

n∑
i=1

|
i〉〈
i |
〈
i |
i〉 − μ̄

N∑
j=n+1

|
j 〉〈
j |
〈
j |
j 〉

⎞⎠V

= (λ − μ̄)

(
I − μ − μ̄

λ − μ̄

n∑
i=1

|
i〉 〈
i |
〈
i | 
i〉

)
V = (λ − μ̄)

(
I − μ − μ̄

λ − μ̄
P

)
V.

The Kth time iteration then gives the Kth superfield solution V[K + 1] of the Lax pair

V[K + 1] =
K∏

k=1

∣∣∣∣∣ M[K − k + 1] I

M[K − k + 1]�K−k+1 λI

∣∣∣∣∣V
=

K∏
k=1

(λ − μ̄K−k+1)

(
I − μK−k+1 − μ̄K−k+1

λ − μ̄K−k+1
P[K − k + 1]

)
V, (4.4)

with the Kth superfield soliton solution G[K + 1] of the supersymmetric chiral model given
by

G[K + 1] =
K∏

k=1

(−μ̄K−k+1)

(
I +

μK−k+1 − μ̄K−k+1

μ̄K−k+1
P[K − k + 1]

)
V, (4.5)

where the superfield Hermitian projection in this case is

P[k] =
n∑

i=1

|
i[k]〉 〈
i[k]|
〈
i[k]| 
i[k]〉 , k = 1, 2, . . . , K,

with

|
i[k]〉 = (
λ

(k)
i I − S[k − 1]

)∣∣
(k)
i

〉
,

and the kth particular matrix superfield solution Mk of the Lax pair is written in terms of kth
particular column superfield solutions as

Mk = (∣∣
(k)
1

〉
,
∣∣
(k)

2

〉
, . . . ,

∣∣
(k)
N

〉)
. (4.6)

Now the expressions for the transformed superfield currents J±[K + 1] are given by

J±[K + 1] =
K∏

k=1

(
I ∓ (μK−k+1 − μ̄K−k+1)

(1 ∓ μ̄K−k+1)
P[K − k + 1]

)
J±

K∏
l=1

(
I ∓ (μ̄l − μl)

(1 ∓ μl)
P[l]

)
.

(4.7)

Expressions (4.4), (4.5) and (4.7) can also be written as the sum of K terms by using the
condition that V[K] = 0 if λ = μi,V = |
i〉. The final expressions for V[K + 1],G[K + 1]
and J±[K + 1] are then given by
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V[K + 1] =
K∑

k,l=1

(λ − μ̄k)

(
I − Rk

λ − μ̄k

)
V, (4.8)

G[K] =
K∑

k,l=1

(−μ̄k)

(
I +

Rk

μ̄k

)
G, (4.9)

J±[K] =
K∑

k=1

(
I ∓ Rk

1 ∓ μ̄k

)
J±

K∑
l=1

(
I ∓ Rl

1 ∓ μl

)
, (4.10)

where the superfield function Rk is defined by

Rk =
K∑

l=1

(μl − μ̄k)

n∑
i=1

∣∣
(k)
i

〉〈



(l)
i

∣∣〈



(k)
i

∣∣
(l)
i

〉 . (4.11)

By expanding the right-hand side in equation (4.8), we see that the two expressions for the
Kth iteration of V , i.e. equations (3.4) and (4.8) are equivalent.

5. Darboux transformation on component fields

For the explicit soliton solutions of the supersymmetric chiral field, it is convenient to define the
Darboux transformation on component fields of the superfields. For this purpose, we expand all
superfields and collect different coefficients of θ ’s. In other words, the Darboux transformation
on the component fields of the supersymmetric chiral field model can be defined by a Darboux
matrix D:

D(λ) = λI − S, (5.1)

where D and S are the leading bosonic components of the matrix superfields D and S,
respectively. The matrix D is defined such that the solution V of the Lax pair (1.14) transforms
as

Ṽ = D(λ)V, (5.2)

with suitable conserved currents j̃±, h̃± satisfying equations (1.8). That is Ṽ , j̃±, h̃± are
required to satisfy the transformed Lax pair

∂±Ṽ = 1

1 ∓ λ
j̃±Ṽ + i

(
1

1 ∓ λ

)2

h̃±Ṽ . (5.3)

Now following the arguments of the previous section, let

M = (V (λ1) |1〉 , . . . , V (λN) |N〉) = (|m1〉 , . . . , |mN 〉) (5.4)

be an invertible N × N matrix, representing the leading bosonic component of the matrix
superfield M with each column |mi〉 = V (λi) |i〉 in M representing a column solution of the
Lax pair (1.14), when λ = λi, i.e.

∂±M = j±M(I ∓ �)−1 + ih±M((I ∓ �)−1)2. (5.5)

Note that the matrix S is now written in terms of � and M as

S = M�M−1. (5.6)

Thus, we have the Darboux transformation on the component fields j± ≡ j±[1] and
ψ± ≡ ψ±[1] given by

(j±, ψ±, V ) �−→ (j̃±, ψ̃±, Ṽ ).

11
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Again substituting (5.2) into equations (5.3) and using (1.14), we have

j̃± = j± ± ∂±S, (5.7)

ψ̃± = (I ∓ S)ψ±(I ∓ S)−1, (5.8)

h̃± = (I ∓ S)h±(I ∓ S)−1, (5.9)

with the conditions on S given by

∂+S(I − S) = j+S − Sj+ − ih+ + i(I − S)h+(I − S)−1, (5.10)

∂−S(I + S) = −j−S + S j− + ih− − i(I + S)h−(I + S)−1. (5.11)

In fact j± and h± are the leading bosonic components of the matrix superfields D±J± and J 2
±,

respectively. Note that ψ± and h± transform exactly in the same manner. Therefore, once we
write the expression for ψ±, similar expression will hold for h±. By using equations (5.10)
and (5.11) in equation (5.7), we get

j̃± = (I ∓ S)j±(I ∓ S)−1 − ih±(I ∓ S)−1 + (I ∓ S)ih±(I ∓ S)−2

= (I ∓ S)j±(I ∓ S)−1 − (I ∓ S)[(I ∓ S)−1, ih±](I ∓ S)−1

= Q±[1](j± + [ih±,Q±[1]−1])Q±[1]−1,

where by analogy of superspace calculations, we write

Q±[i] =
k∏

i=1

(I ∓ S[k]).

Since M and � are matrices, that do not commute, we can write equation (5.2) in terms of
quasideterminants as

Ṽ = D(λ)V = (λI − S) V

= (λI − M�M−1)V =
∣∣∣∣∣ M I

M� λI

∣∣∣∣∣ V, (5.12)

and the chiral field g̃ is expressed as

g̃ = Ṽ (0) = −Sg = −(M�M−1)g =
∣∣∣∣∣ M I

M� O

∣∣∣∣∣ g. (5.13)

Similarly the conserved currents j̃± and the spinor fields ψ̃± of the model are expressed as

j̃± = M(I ∓ �)M−1j±M(I ∓ �)−1M−1 + M(I ∓ �)M−1

× [ih±,M(I ∓ �)−1M−1]M(I ∓ �)−1M−1

=
∣∣∣∣∣ M I

M (I ∓ �) O

∣∣∣∣∣ j±

∣∣∣∣∣ M I

M (I ∓ �) O

∣∣∣∣∣
−1

− i

∣∣∣∣∣ M I

M (I ∓ �) O

∣∣∣∣∣
[
h±,

∣∣∣∣∣M (I ∓ �) I

M O

∣∣∣∣∣
] ∣∣∣∣∣ M I

M (I ∓ �) O

∣∣∣∣∣
−1

(5.14)

and

ψ̃± = M(I ∓ �)M−1ψ±M(I ∓ �)−1M−1

=
∣∣∣∣∣ M I

M (I ∓ �) O

∣∣∣∣∣ ψ±

∣∣∣∣∣ M I

M (I ∓ �) O

∣∣∣∣∣
−1

. (5.15)
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We can iterate the Darboux transformation K times and obtain the quasideterminant
multisoliton solution of the supersymmetric model. For each k = 1, 2, . . . , K , let Mk be an
invertible N × N matrix solution of the Lax pair (1.14) at � = �k; then the Kth solution
V [K + 1] is expressed as

V [K + 1] =
K∏

k=1

(λI − S[K − k + 1]) V =
K∏

k=1

∣∣∣∣∣ M[K − k + 1] I

M[K − k + 1]�K−k+1 λI

∣∣∣∣∣ V

= λV [K] − M[K]�KM[K]−1V [K]

=

∣∣∣∣∣∣∣∣∣∣
M1 · · · MK I

M1�1 · · · MK�K λI

... · · · ...
...

M1�
K
1 · · · MK�K

K λKI

∣∣∣∣∣∣∣∣∣∣
V. (5.16)

The multisoliton solution g[K + 1] of the supersymmetric model can be readily obtained by
taking λ = 0 in the expression of V [K + 1], i.e.

g[K + 1] =
K∏

k=1

(−1)k S[K − k + 1]g =
K∏

k=1

∣∣∣∣∣ M[K − k + 1] I

M[K − k + 1]�K−k+1 O

∣∣∣∣∣ g

=

∣∣∣∣∣∣∣∣∣∣∣∣

M1 M2 · · · MK I

M1�1 M2�2 · · · MK�K O

M1�
2
1 M2�

2
2 · · · MK�2

K O

...
... · · · ...

...

M1�
K
1 M2�

K
2 · · · MK�K

K O

∣∣∣∣∣∣∣∣∣∣∣∣
g. (5.17)

Similarly the K times iteration of the Darboux transformation gives the following expression
of the conserved currents:

j±[K + 1] =

∣∣∣∣∣∣∣∣∣∣
M1 · · · MK I

M1(I ∓ �1) · · · MK(I ∓ �K) O

... · · · ...
...

M1(I ∓ �1)
K · · · MK(I ∓ �K)K O

∣∣∣∣∣∣∣∣∣∣⎛⎜⎜⎜⎜⎜⎜⎝j± −

⎡⎢⎢⎢⎢⎢⎢⎣ih±,

∣∣∣∣∣∣∣∣∣∣∣∣

M1(I ∓ �1)
K · · · MK(I ∓ �K)K O

... · · · ...
...

M1(I ∓ �1)
2 · · · MK(I ∓ �K)2 O

M1(I ∓ �1) · · · MK(I ∓ �K) I

M1 · · · MK O

∣∣∣∣∣∣∣∣∣∣∣∣

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠ (5.18)

×

∣∣∣∣∣∣∣∣∣∣
M1 · · · MK I

M1(I ∓ �1) · · · MK(I ∓ �K) O

... · · · ...
...

M1(I ∓ �1)
K · · · MK(I ∓ �K)K O

∣∣∣∣∣∣∣∣∣∣

−1

. (5.19)
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For the spinor fields of the model, the K-fold Darboux transformation gives

ψ±[K + 1] =

∣∣∣∣∣∣∣∣∣∣
M1 · · · MK I

M1(I ∓ �1) · · · MK(I ∓ �K) O

... · · · ...
...

M1(I ∓ �1)
K · · · MK(I ∓ �K)K O

∣∣∣∣∣∣∣∣∣∣
×ψ±

∣∣∣∣∣∣∣∣∣∣
M1 · · · MK I

M1(I ∓ �1) · · · MK(I ∓ �K) O

... · · · ...
...

M1(I ∓ �1)
K · · · MK(I ∓ �K)K O

∣∣∣∣∣∣∣∣∣∣

−1

. (5.20)

6. Soliton solution of the SU (2) model

For the construction of explicit solution in the matrix form using the Darboux transformation,
we take the example of G = SU(2). The solutions can be obtained by the Darboux
transformation by taking the trivial solution as the seed solution. We have been considering
the case where j±, ih± ∈ su(2); the following discussion, however, are essentially the same
for the Lie algebra u(2). Let us take a most general unimodular 2 × 2 matrix representing an
element of the Lie group SU(2):(

X Y

−Ȳ X̄

)
,

where X and Y are complex numbers satisfying XX̄ +Y Ȳ = 1. Let j±, ih± = iψ2
± are the non-

zero constant (commuting) elements of su(2), such that they are represented by anti-Hermitian
2 × 2 matrices:

j+ =
(

ip 0
0 −ip

)
, j− =

(
iq 0
0 −iq

)
,

ih+ =
(

iα 0
0 −iα

)
, ih− =

(
iβ 0
0 −iβ

)
,

(6.1)

where p, q, α, β are non-zero real numbers. Since the bosonic field ih± is a product of two
Majorana spinors taking values in the Lie algebra su(2), we can make a choice of matrix
representation of ih± as given in (6.1) identical to that of j± with real numbers α and β being
products of two Grassmann numbers each satisfying the Majorana reality condition. The seed
solution is then written as

g(x+, x−) = g[1] =
(

ei{(p+α)x++(q+β)x−} 0
0 e−i{(p+α)x++(q+β)x−}

)
. (6.2)

The corresponding V (λ) is

V (λ) = V [1](λ) =
(

ω(λ) 0
0 ω−1(λ)

)
, (6.3)

where

ω(λ) = exp i

(
1

1 − λ
px+ +

1

1 + λ
qx−

)
· exp i

(
1

(1 − λ)2 αx+ +
1

(1 + λ)2 βx−
)

. (6.4)

In this sense g, j±, h± and V constitute the seed solution for the Darboux transformation.
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Taking λ1 = μ and λ2 = μ̄, we have

M = (V (μ)|1〉, V (μ̄)|2〉) = (|m1〉, |m2〉)
=

(
ω(μ) ω(μ̄)

−ω−1(μ) ω−1(μ̄)

)
. (6.5)

From (6.4), we see that

ω(μ) = ω−1(μ), ω(μ) = ω−1(μ). (6.6)

By direct calculations, we note that

det M = er+r ′
+ e−(r+r ′) > 0, (6.7)

S = M�M−1

= 1

er+r ′ + e−(r+r ′)

(
μ er+r ′

+ μ̄e−(r+r ′) (μ − μ̄) ei(s+s ′)

(μ − μ̄) e−i(s+s ′) μ̄ er+r ′
+ μ e−(r+r ′)

)
, (6.8)

where

r(x+, x−) = i

(
1

(1 − μ)
− 1

(1 − μ̄)

)
px+ + i

(
1

(1 + μ)
− 1

(1 + μ̄)

)
qx−,

r ′(x+, x−) = i

(
1

(1 − μ)2 − 1

(1 − μ̄)2

)
αx+ + i

(
1

(1 + μ)2 − 1

(1 + μ̄)2

)
βx−,

(6.9)

s(x+, x−) =
(

1

(1 − μ)
+

1

(1 − μ̄)

)
px+ +

(
1

(1 + μ)
+

1

(1 + μ̄)

)
qx−,

s ′(x+, x−) =
(

1

(1 − μ)2 +
1

(1 − μ̄)2

)
αx+ +

(
1

(1 + μ)2 +
1

(1 + μ̄)2

)
βx−,

are linear functions of x+ and x−. The new solutions of the Lax pair and the field equations
are

Ṽ (λ) = (λI − S) V (λ), g̃ = Ṽ |λ=0
1

|μ| , (6.10)

respectively. The above right-multiplier
1

|μ| is used to keep g̃ ∈ SU (2) . Now g̃ can be written

as

g̃ = D(λ)|λ=0 g = −Sg, (6.11)

=
(

X̃ Ỹ

−Ỹ X̃

)
g, (6.12)

with

X̃ = μe(r+r ′) + μ̄e−(r+r ′)

e(r+r ′) + e−(r+r ′)

1

|μ| , (6.13)

Ỹ = (μ − μ̄)

e(r+r ′) + e−(r+r ′) ei(s+s ′) 1

|μ| (6.14)

or

X̃ =
[

1 −
(

1

2

∣∣∣∣μ − μ̄

μ

∣∣∣∣ sech(r + r ′)
)2

]
, (6.15)
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Ỹ = 1

2

∣∣∣∣μ − μ̄

μ

∣∣∣∣ sech(r + r ′) ei(s+s ′). (6.16)

The above expressions indicate that the functions X̃ and Ỹ have a solitonic form. Making the
substitution μ = eiθ and simplifying, we get from (6.13) and (6.14)

X̃ = −(cos θ + i sin θ tanh(r + r ′)), (6.17)

Ỹ = i(sin θsech(r + r ′)) ei(s+s ′). (6.18)

By using equations (6.1) and (6.8) in (5.7), we get the expressions for j±[1] and h±[1] as

j̃+ =
(

a b

−b̄ ā

)
, j̃−[1] =

(
c d

−d̄ c̄

)
,

ih̃+[1] =
(

ρ σ

−σ̄ ρ̄

)
, ih̃−[1] =

(
γ δ

−δ̄ γ̄

)
,

(6.19)

where

a = ip

[
1 +

1

2

(μ − μ̄)2

|1 − μ|2 sech2(r + r ′)
]

+ iα
1

2

(μ − μ̄)2

|1 − μ|2 sech2(r + r ′),

b = −ip

[
−1

2

(μ − μ̄)2

|1 − μ|2 tanh(r + r ′) +
1

2
(μ − μ̄)

]
(sech(r + r ′)) ei(s+s ′)

− iα

[
−1

2

(μ − μ̄)2

|1 − μ|2 tanh(r + r ′) − 1

2

(μ2 − μ̄2)

(2−μ − μ̄)

]
(sech(r + r ′)) ei(s+s ′),

c = iq

[
1 +

1

2

(μ − μ̄)2

|1 + μ|2 sech2(r + r ′)
]

+ iβ
1

2

(μ − μ̄)2

|1 + μ|2 sech2(r + r ′),

d = iq

[
−1

2

(μ − μ̄)2

|1 + μ|2 tanh(r + r ′) − 1

2
(μ − μ̄)

]
(sech(r + r ′)) ei(s+s ′)

− iβ

[
−1

2

(μ − μ̄)2

|1 + μ|2 tanh(r + r ′) +
1

2

(μ2 − μ̄2)

(2−μ − μ̄)

]
(sech(r + r ′)) ei(s+s ′),

ρ = iα

[
1 +

1

2

(μ − μ̄)2

|1 − μ|2 sech2(r + r ′)
]

,

σ = iα

[(
1 +

1

4

(μ − μ̄)2

|1 − μ|2 sech2(r + r ′)
) 1

2 (μ − μ̄)

|1 − μ| sech(r + r ′) ei(s+s ′)

]
,

γ = iβ

[
1 +

1

2

(μ − μ̄)2

|1 + μ|2 sech2(r + r ′)
]

,

δ = iβ

[(
1 +

1

4

(μ − μ̄)2

|1 + μ|2 sech2(r + r ′)
) 1

2 (μ − μ̄)

|1 + μ| sech(r + r ′) ei(s+s ′)

]
.

Taking μ = eiθ , we may rewrite the above expressions as

a = ip
(
1 − (1 + cos θ)sech2(r + r ′)

) − iα(1 + cos θ)sech2(r + r ′),

b = −ip
[
(1 + cos θ) tanh(r + r ′) + i sin θ

]
(sech(r + r ′)) ei(s+s ′)

− iα

[
(1 + cos θ) tanh(r + r ′) − i sin θ cos θ

1 − cos θ

]
(sech(r + r ′)) ei(s+s ′),

c = iq(1 − (1 − cos θ)sech2(r + r ′)) − iβ(1 − cos θ)sech2(r + r ′),
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d = iq [(1 − cos θ) tanh r − i sin θ ] (sech(r + r ′)) ei(s+s ′)

− iβ

[
(1 − cos θ) tanh(r + r ′) − i sin θ cos θ

1 − cos θ

]
(sech(r + r ′)) ei(s+s ′),

ρ = α
(
1 − (1 + cos θ)sech2(r + r ′)

)
,

σ = α [(1 + cos θ) tanh r + i sin θ ] (sech(r + r ′)) ei(s+s ′),

γ = β(1 − (1 − cos θ)sech2(r + r ′)),

δ = β [(1 − cos θ) tanh r − i sin θ ] (sech(r + r ′)) ei(s+s ′).

Equation (6.19) shows the novel result. We generate a new solution by starting from an
arbitrary seed solution. In the asymptotic limit for t → ±∞, r, r ′ → ±∞ and the solution
(6.12) reduces to the same expression as we obtained in the bosonic case [1]. Therefore these
solutions are almost localized and behave asymptotically as a traveling wave. On comparison
of the results obtained here with the bosonic case, we see that the soliton solution obtained
for the supersymmetric chiral field model reduces to the results of the bosonic case [1] when
the fermions are set to zero. Substituting above equations in (6.19), we get Tr j̃+ = Tr h̃+ =
Tr j̃− = Tr h̃− = 0. As we have mentioned earlier, we also have Tr ∂+S = Tr ∂−S = 0 from
(5.10) and (5.11). Therefore j̃± and h̃± satisfy the additional constraints for g ∈ SU(N).
Consequently, when we use the above equations in (6.19), we get the explicit expressions
of the conserved currents (solutions) j̃± and h̃± of the supersymmetric model by using the
Darboux transformation.

7. Conclusions and outlook

In this paper, we have studied the supersymmetric principal chiral field model in two
dimensions and obtained multisoliton solutions using the Darboux transformation. By starting
with a superspace formalism, we expressed the Lax pair of the model in terms of component
fields and expressed the solutions in terms of quasideterminants. We have applied the standard
method of Darboux transformation to obtain the single as well as multisoliton solutions of the
model. We have explicitly obtained the expressions of multisolitons for the SU(2) model, and it
reduces to the multisoliton solutions of the bosonic model when fermions are set equal to zero.
Given the way in which such multisoliton solutions are constructed, it would be interesting to
construct these solutions for other Lie groups and for more general supersymmetric nonlinear
sigma models with target space being a compact symmetric space.

The main focus of our study in this paper has been the construction of classical multisoliton
solutions of the supersymmetric chiral field model. An important aspect, however, is to
investigate quantization of these solitons that has important physical significance regarding the
quantum integrability and computation of exact quantities (e.g. exact factorizable S-matrix,
mass-gap, etc) of the model as an integrable quantum field theory. It would also be worthwhile
to study the binary Darboux transformation for the supersymmetric chiral model, by which
the multisoliton solutions are obtained by defining a Hermitian projector expressed in terms
of solutions of a (direct) Lax pair and an adjoint Lax pair.

Finally, there has been an increasing interest in the study of various integrable structures
in string theory on AdS5 × S5 motivated by AdS/CFT correspondence, where the theory
is regarded as a nonlinear sigma model with fields taking values in a supercoset space (see
e.g. [22–27]). The bosonic strings on R × S3, a submanifold of AdS5 × S5, are described
in static gauge by an SU(2) principal chiral model, the soliton solutions of which are used
to construct classical string solutions. The principal chiral model we have studied has world-
sheet supersymmetry, rather than the target space supersymmetry as is the case of string theory.
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It would be interesting to consider principal chiral model with target space supersymmetry
and to construct multisoliton solutions using the Darboux transformation and binary Darboux
transformation. We hope to examine these problems in future.
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